Top-Down CMOS-NEMS Polysilicon Nanowire with Piezoresistive Transduction
نویسندگان
چکیده
A top-down clamped-clamped beam integrated in a CMOS technology with a cross section of 500 nm × 280 nm has been electrostatic actuated and sensed using two different transduction methods: capacitive and piezoresistive. The resonator made from a single polysilicon layer has a fundamental in-plane resonance at 27 MHz. Piezoresistive transduction avoids the effect of the parasitic capacitance assessing the capability to use it and enhance the CMOS-NEMS resonators towards more efficient oscillator. The displacement derived from the capacitive transduction allows to compute the gauge factor for the polysilicon material available in the CMOS technology.
منابع مشابه
Integration of NEMS resonators in a 65 nm CMOS technology
In this work we study the feasibility to obtain the smallest CMOS-NEMS resonator using a sub-100 nm CMOS technology. The NEMS resonators are defined in a top-down approach using the available layers of the 65 nm CMOS technology from ST Microelectronics. A combination of dry and wet etching is developed in order to release the NEMS in an in-house post-CMOS process. Two different NEMS resonators ...
متن کاملIn-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection.
We report an actuation/detection scheme with a top-down nanoelectromechanical system (NEMS) for frequency shift based sensing applications with outstanding performance. It relies on electrostatic actuation and piezoresistive nanowire gauges for in-plane motion transduction. The process fabrication is fully CMOS (complementary metal-oxide-semiconductor) compatible. The results show a very large ...
متن کاملA CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications
This paper reports a versatile nano-sensor technology using "top-down" poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n ...
متن کاملImproving the Sensitivity of MEMS Piezoresistive Pressure Sensor using Polysilicon Double Nanowire
The paper describes the performance analysis, structural design and fabrication of piezoresistive pressure sensor using simulation technique. A polysilicon double nano-wire piezoresistor was fabricated by means of RIE (reactive ion etching). The polysilicon double nanowire pressure sensor has 100x100nm cross section area and has a thickness about 10nm. Finite element method (FEM) is adopted to ...
متن کاملHigh frequency top-down junction-less silicon nanowire resonators.
We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ~20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integrati...
متن کامل